News & Updates

NUS researchers develop ultra-thin microfibre sensor for real-time healthcare monitoring

A research team from National University of Singapore (NUS) has developed a soft, flexible and stretchable microfibre sensor for real-time healthcare monitoring and diagnosis. The novel sensor is highly sensitive and ultra-thin with a diameter of a strand of human hair. It is also simple and cost-effective to mass produce.
Wearable and flexible technology has gained significant interest in recent years, leading to tremendous progress in soft and wearable sensors. In tandem with this trend, micro-fluidic devices using conductive liquid metals have been increasingly employed as wearable pressure and strain sensors. However, current devices have various limitations – for instance, they may not fit well on the skin or are uncomfortable to wear.
“Our novel microfibre sensor can hardly be felt on the skin and conforms extremely well to skin curvatures. Despite being soft and tiny, the sensor is highly sensitive and it also has excellent electrical conductivity and mechanical deformability. We have applied the sensor for real-time monitoring of pulse waveform and bandage pressure. The results are very promising,” said Professor Lim Chwee Teck from the Department of Biomedical Engineering at NUS Faculty of Engineering, who is the leader of the research team.
Real-time monitoring of pulse waveform
The smart microfibre sensor developed by the NUS Engineering team comprises a liquid metallic alloy, which serves as the sensing element, encapsulated within a soft silicone microtube. The sensor measures an individual’s pulse waveform in real-time, and the information can be used to determine one’s heart rate, blood pressure and stiffness in blood vessels.
“Currently, doctors will monitor vital signs like heart rate and blood pressure when patients visit clinics. This requires multiple equipment such as heart rate and blood pressure monitors, which are often bulky and may not provide instantaneous feedback. As our sensor functions like a conductive thread, it can be easily woven into a glove which can be worn by doctors to track vital signs of patients in real-time. This approach offers convenience and saves time for healthcare workers, while patients can enjoy greater comfort,” added Prof Lim.
The microfibre sensor could also be beneficial for patients suffering from atherosclerosis, which is the thickening and stiffening of the arteries caused by the accumulation of fatty streaks. Over time, these streaks accumulate into plaques which may completely block off blood flow or break apart, resulting in organ failure or may trigger a heart attack or stroke.